

University of Connecticut Department of Mathematics

Матн 2210	Practice Exam 1	Fall 2018
NAME:		
Instructor Name:		Section:

This practice exam *is not* an exhaustive list of problems you should expect to see on the actual exam. It is not representative of the length of the in class exam, and problems on the actual exam may be different than those seen here. Look at the homework, quizzes, in class notes, or extra suggested problems from the book for more practice.

The following message appears on the actual exam:

Read This First!

- Please read each question carefully. Show **ALL** work clearly in the space provided. In order to receive full credit on a problem, solution methods must be complete, logical and understandable.
- Answers must be clearly labeled in the spaces provided after each question. Please cross out or fully erase any work that you do not want graded. The point value of each question is indicated after its statement. No books or other references are permitted.
- No calculators permitted.

- 1. If the statement is always true, circle True. If the statement is sometimes false, circle False. In each case, write a careful and clear **justification** or **counterexample**.
 - (a) If the linear transformation $T : \mathbf{R}^n \to \mathbf{R}^n$ is given by $\mathbf{x} \mapsto A\mathbf{x}$, True False then the row reduced echelon form of A is I_n .

(b) If A and B are $n \times n$ matrices and AB is invertible, True False then B is invertible.

(c) Let A be an $m \times n$ matrix where m > n. If A has n pivots, True False then the equation $A\mathbf{x} = \mathbf{b}$ is consistent for every $\mathbf{b} \in \mathbf{R}^m$.

- 2. Which of the following correctly describes the system associated to the augmented matrix:
 - $\begin{bmatrix} 2 & -8 & | & 0 \\ -1 & 4 & | & 0 \end{bmatrix}$
 - (a) Inconsistent
 - (b) Consistent with exactly one solution which is nontrivial
 - (c) Consistent with exactly one solution which is trivial
 - (d) Cosistent with infinitely many solutions, all of which are nontrivial
 - (e) Consistent with infinitely many solutions, one of which is trivial
- 3. Which of the following sets are linearly independent?

(a)
$$\left\{ \begin{bmatrix} -1\\2 \end{bmatrix}, \begin{bmatrix} 3\\4 \end{bmatrix}, \begin{bmatrix} -1\\1 \end{bmatrix}, \begin{bmatrix} 1\\7 \end{bmatrix} \right\}$$

(b) $\left\{ \begin{bmatrix} -1\\2 \end{bmatrix}, \begin{bmatrix} 1\\3 \end{bmatrix} \right\}$
(c) $\left\{ \begin{bmatrix} -1\\2 \end{bmatrix}, \begin{bmatrix} 0\\0 \end{bmatrix} \right\}$
(d) $\left\{ \begin{bmatrix} -1\\2 \end{bmatrix}, \begin{bmatrix} -3\\6 \end{bmatrix} \right\}$

4. For which matrix A below, do the columns of A span \mathbb{R}^3 ?

(a)
$$A = \begin{bmatrix} 2 & 1 & 7 & 0 \\ 0 & -1 & 3 & -4 \\ 0 & 0 & 3 & 5 \end{bmatrix}$$

(b) $A = \begin{bmatrix} 1 & -4 \\ 0 & 3 \\ 0 & 0 \end{bmatrix}$
(c) $A = \begin{bmatrix} 9 & -1 & -5 \\ 0 & -1 & 3 \end{bmatrix}$
(d) $A = \begin{bmatrix} -5 & 1 & 2 \\ 0 & 4 & -2 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix}$

5. The following matrix A is in what form?

$$A = \begin{bmatrix} 1 & 4 & 0 & 2 & 1 \\ 0 & 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

- (a) Echelon form
- (b) Reduced row echelon form (RREF)
- (c) Neither

6. Given the linear system below, write the solution set in parametric vector form.

$$\begin{cases} 2x_1 - 6x^2 + 4x_3 - 6x_4 = -18\\ 3x_1 - 2x_3 = 3 \end{cases}$$

7. Consider the following system of equations where $a \neq 0$. Prove that if $a \neq 24$ then the system has exactly one solution.

 $\begin{cases} ax - 6y = -1 \\ 4x - y = 3 \end{cases}$

8. Let
$$A = \begin{bmatrix} 1 & 0 & -2 \\ 3 & 4 & 0 \\ 3 & 0 & -1 \end{bmatrix}$$
, $B = \begin{bmatrix} 3 & -4 \\ 0 & 1 \\ -1 & 3 \end{bmatrix}$ and $C = \begin{bmatrix} 2 & 1 \\ -2 & 6 \end{bmatrix}$.

Compute the following. If any operations are not possible, explain why not.

(a) $\det C$

(b) C^{-1}

(c) A^{-1}

Let
$$A = \begin{bmatrix} 1 & 0 & -2 \\ 3 & 4 & 0 \\ 3 & 0 & -1 \end{bmatrix}$$
, $B = \begin{bmatrix} 3 & -4 \\ 0 & 1 \\ -1 & 3 \end{bmatrix}$ and $C = \begin{bmatrix} 2 & 1 \\ -1 & 6 \end{bmatrix}$.

Compute the following. If any operations are not possible, explain why not.

(d) $B^T A$

(e) ABC.

9. Suppose $A = \begin{bmatrix} -1 & -1 \\ 5 & 0 \end{bmatrix}$ is the standard matrix for the mapping $T : \mathbf{R}^2 \to \mathbf{R}^2$ (a) Show that T satisfies the two conditions below for all vectors $\mathbf{u}, \mathbf{v} \in \mathbf{R}^2$ and all scalars c.

 $T(c\mathbf{u}) = cT(\mathbf{u}) \qquad \qquad T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$

(b) Is T one-to-one? Explain why or why not.

(c) Is T onto? Explain why or why not.

10. Let
$$S = \left\{ \begin{bmatrix} 1\\0\\3 \end{bmatrix}, \begin{bmatrix} 1\\-1\\1 \end{bmatrix}, \begin{bmatrix} 0\\k\\1 \end{bmatrix} \right\}.$$

(a) For what value(s) of k is the set S linearly independent? (Show how you arrive at your answer)

(b) Let k = 2. Is the vector $\begin{bmatrix} 2\\2\\2 \end{bmatrix}$ in Span S? Explain why or why not.

- 11. For each of the following, determine whether the matrix described is invertible or not invertible, and **give a reason** for each one.
 - (a) A is a 3×3 matrix, and the image of the transformation T by $\mathbf{x} \mapsto A\mathbf{x}$ is a plane.

(b) B is a square matrix, and there is a matrix D such that $B^T D = I$.

(c) C is an 3×3 matrix and the columns of C span all of \mathbb{R}^3 .

12. Let
$$A = \begin{bmatrix} 1 & -2 & -4 & -3 \\ 2 & -7 & -7 & -6 \\ -1 & 2 & 6 & 4 \\ -4 & -1 & 9 & 8 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} 1 \\ 7 \\ 0 \\ 3 \end{bmatrix}$. Find an *LU*-factorization for *A*.