1.8 Intro to Linear Transformations

McDonald Fall 2018, MATH 2210Q, 1.8Slides

1.8 Homework: Read section and do the reading quiz. Start with practice problems, then do

- Hand in: 2, 8, 9, 21, 31
- Extra Practice: 1-18

Example 1.8.1. If $A = \begin{bmatrix} 4 & -3 & 1 & 3 \\ 2 & 0 & 5 & 1 \end{bmatrix}$, $\mathbf{u} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$, and $\mathbf{v} = \begin{bmatrix} 1 \\ 4 \\ -1 \\ 3 \end{bmatrix}$. Find $A\mathbf{0}$, $A\mathbf{u}$, and $A\mathbf{v}$.

We can think of A as *acting* on $\mathbf{0}$, \mathbf{u} , and \mathbf{v} like a *function* from one set of vectors to another.

Definition 1.8.2. A transformation (also called a function or mapping) T from \mathbb{R}^n to \mathbb{R}^m is a rule that assigns to each vector \mathbf{x} in \mathbb{R}^n one (and only one) vector $T(\mathbf{x})$ in \mathbb{R}^m . The set \mathbb{R}^n is called the **domain** of T and \mathbb{R}^m is called the **codomain** of T, denoted $T: \mathbb{R}^n \to \mathbb{R}^m$.

For \mathbf{x} in \mathbb{R}^n , the vector $T(\mathbf{x})$ in \mathbb{R}^m is called the **image** of \mathbf{x} . The subset of \mathbb{R}^m consisting of all possible images $T(\mathbf{x})$ is called the **range**.

Remark 1.8.3. In this section, we will focus on mappings associated to *matrix multiplication*. For simplicity, we sometimes denote this *matrix transformation* by $\mathbf{x} \mapsto A\mathbf{x}$.

Example 1.8.4. Let
$$A = \begin{bmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{bmatrix}$$
, $\mathbf{u} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} 3 \\ 2 \\ -5 \end{bmatrix}$, $\mathbf{c} = \begin{bmatrix} 3 \\ 2 \\ 5 \end{bmatrix}$,

and define a transformation $T: \mathbb{R}^2 \to \mathbb{R}^3$ by $T(\mathbf{x}) = A\mathbf{x}$.

- (a) Write $T(\mathbf{x})$ as a vector.
- (b) Find $T(\mathbf{u})$, the image of \mathbf{u} under the transformation T.
- (c) Find an \mathbf{x} in \mathbb{R}^2 such that $T(\mathbf{x}) = \mathbf{b}$. Is there more than one?
- (d) Determine if \mathbf{c} is in the range of T.

Example 1.8.5. Let $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ and describe $\mathbf{x} \mapsto A\mathbf{x}$.

Remark 1.8.6. The map in Example 1.8.5 is called a projection map.

Example 1.8.7. Let $A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$, and $T(\mathbf{x}) = A\mathbf{x}$. Find the images of $\mathbf{u} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, and $\mathbf{u} + \mathbf{v} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ under T, and use this to describe T geometrically.

Remark 1.8.8. The map in Example 1.8.7 is called a shear transformation.

Definition 1.8.9. A transformation T is called linear if
(i) T(u + v) = T(u) + T(v) for all u, v in the domain of T;
(ii) T(cu) = cT(u) for all scalars c and u in the domain of T.

Remark 1.8.10. The properties of $A\mathbf{x}$ Section 1.4 show that when T is a matrix transformation, T is a linear transformation. Not all transformations are linear, however.

Proposition 1.8.11. If T is a linear transformation, then $T(\mathbf{0}) = \mathbf{0}$, and $T(c\mathbf{u} + d\mathbf{v}) = cT(\mathbf{u}) + dT(\mathbf{v})$ for all vectors \mathbf{u}, \mathbf{v} in the domain of T, and all scalars c, d.

Remark 1.8.12. If T satisfies the second property above, then it is as linear transformation. Repeated application of this property gives

 $T(c_1\mathbf{u}_1 + \dots + c_n\mathbf{v}_n) = c_1T(\mathbf{u}_1) + \dots + c_nT(\mathbf{v}_n)$

In physics and engineering, this is called a *superposition principle*.

Example 1.8.13. Given a scalar $r \ge 0$, define $T : \mathbb{R}^2 \to \mathbb{R}^2$ by $T(\mathbf{x}) = r\mathbf{x}$. Prove T is a linear transformation, and describe it geometrically.

Remark 1.8.14. In Example 1.8.12, the linear transformation T is called a contraction when 0 < r < 1 and a dilation when r > 1.

Example 1.8.15. Let $A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$, and $T(\mathbf{x}) = A\mathbf{x}$. Find the images of $\mathbf{u} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, and $\mathbf{u} + \mathbf{v} = \begin{bmatrix} 4 \\ 3 \end{bmatrix}$ under T, and use this to describe T geometrically.

1.8.1 Additional Thoughts and Problems