4.4 Coordinate Systems

McDonald Fall 2018, MATH 2210Q, 4.4 Slides

4.4 Homework: Read section and do the reading quiz. Start with practice problems.

• *Hand in*: 2, 5, 10, 13, 15, 17

• Recommended: 3, 7, 11, 21, 23, 32

An important reason for specifying a basis \mathcal{B} for a vector space V is to give V a "coordinate system." We will show that if \mathcal{B} contains n vectors, then the coordinate system makes V look like \mathbb{R}^n .

Theorem 4.4.1. Let $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ be a basis for a vector space V. Then for each \mathbf{x} in V, there exists a unique set of scalars c_1, \dots, c_n such that

$$\mathbf{x} = c_1 \mathbf{b}_1 + \dots + c_n \mathbf{b}_n.$$

Definition 4.4.2. Suppose $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ is a basis for V, and \mathbf{x} is in V. The coordinates of \mathbf{x} relative to \mathcal{B} (or the \mathcal{B} -coordinates of \mathbf{x}) are the weights c_1, \dots, c_n such that $\mathbf{x} = c_1 \mathbf{b}_1 + \dots + c_p \mathbf{b}_n$. The vector in \mathbb{R}^n

$$\begin{bmatrix} \mathbf{x} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}$$

is called the **coordinate vector of x** (relative to \mathcal{B}), and the mapping from V to \mathbb{R}^n by $\mathbf{x} \mapsto [\mathbf{x}]_{\mathcal{B}}$ is called the **coordinate mapping** (determined by \mathcal{B}).

Example 4.4.3. Consider the basis $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\} = \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right\}$ of \mathbb{R}^2 . Suppose \mathbf{x} has the coordinate vector $\begin{bmatrix} \mathbf{x} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} -2 \\ 3 \end{bmatrix}$. Find \mathbf{x} .

Example 4.4.4. Consider the **standard basis** for \mathbb{R}^2 , $\mathcal{E} = \{\mathbf{e}_1, \mathbf{e}_2\}$. Let $\mathbf{x} = \begin{bmatrix} 1 \\ 6 \end{bmatrix}$. Find $[\mathbf{x}]_{\mathcal{B}}$.

1

Example 4.4.5. In the previous two examples, we considered the coordinates of $\mathbf{x} = \begin{bmatrix} 1 \\ 6 \end{bmatrix}$ in \mathbb{R}^2 relative to the bases \mathcal{B} and \mathcal{E} . Interpret these examples graphically.

Once we fix a basis \mathcal{B} for \mathbb{R}^n , the \mathcal{B} -coordinates of a specified \mathbf{x} are easy to find:

Example 4.4.6. Let $\mathcal{B} = \left\{ \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \end{bmatrix} \right\}$ be a basis for \mathbb{R}^2 . Find the coordinate vector of $\begin{bmatrix} 4 \\ 5 \end{bmatrix}$.

The matrix we used in the previous example changed the \mathcal{B} -coordinates of a vector \mathbf{x} into the standard coordinates for \mathbf{x} . We can generalize this to \mathbb{R}^n :

Definition 4.4.7. Suppose $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ is a basis for \mathbb{R}^n , and define the matrix $P_{\mathcal{B}} = \begin{bmatrix} \mathbf{b}_1 & \cdots & \mathbf{b}_n \end{bmatrix}$. Then the vector equation $\mathbf{x} = c_1 \mathbf{b}_1 + \cdots c_n \mathbf{b}_n$ is equivalent to $\mathbf{x} = P_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}}$.

 $P_{\mathcal{B}}$ is called the **change-of-coordinates matrix** from \mathcal{B} to the standard basis for \mathbb{R}^n .

Theorem 4.4.8. Let $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ be a basis for a vector space V. Then the mapping $\mathbf{x} \mapsto \begin{bmatrix} \mathbf{x} \end{bmatrix}_{\mathcal{B}}$ is a one-to-one and onto linear transformation from V to \mathbb{R}^n .

Remark 4.4.9. A one-to-one linear transformation between a vector space V onto another vector space W is called an *isomorphism*, from the Greek words *iso* meaning "the same," and *morph* meaning "structure." The map $\mathbf{x} \mapsto \begin{bmatrix} \mathbf{x} \end{bmatrix}_{\mathcal{B}}$ gives us a way to view V as indistinguishable from \mathbb{R}^n .

Example 4.4.10. Let $\mathcal{B} = \{1, t, t^2\}$ be the standard basis of \mathbb{P}_2 . Let $\mathbf{p}_0 = a_0 + a_1 t + a_2 t^2$, $\mathbf{p}_1 = t^2$, $\mathbf{p}_2 = 4 + t + 5t^2$ and $\mathbf{p}_3 = 3 + 2t$.

(a) Find $[\mathbf{p}]_{\mathcal{B}}$ for $\mathbf{p} = \mathbf{p}_0, \dots, \mathbf{p}_3$.

(b) Use coordinate vectors to show that \mathbf{p}_1 , \mathbf{p}_2 , and \mathbf{p}_3 are linearly independent.

Remark 4.4.11. In this example, \mathbb{P}_2 is *isomorphic* to \mathbb{R}^3 . In general, \mathbb{P}_n is isomorphic to \mathbb{R}^{n+1} .

Example 4.4.12. Let $\mathbf{v}_1 = \begin{bmatrix} 3 \\ 6 \\ 2 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$, and $\mathbf{x} = \begin{bmatrix} 3 \\ 12 \\ 7 \end{bmatrix}$. Suppose $H = \mathrm{Span}\{\mathbf{v}_1, \mathbf{v}_2\}$.

- (a) Find a basis \mathcal{B} for H.
- (b) Show that $[\mathbf{x}]_{\mathcal{B}}$ is a map from H to \mathbb{R}^2 , hence, an isomorphism between H and \mathbb{R}^2 .
- (c) Show \mathbf{x} is in H, and find the coordinate vector of \mathbf{x} relative to \mathcal{B} .

Remark 4.4.13. This example shows that $\mathbf{v}_1, \mathbf{v}_2$ span a plane in \mathbb{R}^3 that is *isomorphic* to \mathbb{R}^2 . In fact, if $S = {\mathbf{v}_1, \dots, \mathbf{v}_n}$ is a linearly independent set of vectors in \mathbb{R}^m , then $H = \operatorname{Span}{\{\mathbf{v}_1, \dots, \mathbf{v}_n\}}$ is isomorphic to \mathbb{R}^n under the map $\mathbf{x} \mapsto [\mathbf{x}]_{\mathcal{B}}$ where $\mathcal{B} = S$.

Definition 4.4.14. If V is spanned by a finite set, then the **dimension** of V is the number of vectors in a basis for V. The dimension of the zero space, $\{0\}$ is defined to be zero. If V is not spanned by a finite set, then V is said to be **infinite-dimensional**.