
MATH 118, Spring 2020, Linear Algebra Key Ideas

Taken in part from

Introduction to Linear Algebra, 4e,

Gilbert Strang

Notes compiled by Bobby McDonald

Yale University, 2020



Contents

1 Introduction to Vectors 2

1.1 Vectors and linear combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Lengths and dot products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Solving Linear Equations 3

2.1 Vectors and linear equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 The idea of elimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.3 Elimination using matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.4 Rules for matrix operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.5 Invers matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.6 LU factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.7 Transposes and permutations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Vector Spaces and Subspaces 6

3.1 Spaces of vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.2 The null space, solutions to Ax = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.3 The complete solution to Ax = b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.4 Independence, basis, and dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.5 Dimensions of the four subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4 Orthogonality 8

4.1 Orthogonality of the four subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4.2 Projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4.3 Least squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.4 Orthogonal bases and Gram-Schmidt . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1



Chapter 1

Introduction to Vectors

1.1 Vectors and linear combinations

1.1. Key Ideas

� A vector v in two-dimensional space has two components v1 and v2.

� v + w = 〈v1 + w1, v2 + w2〉 and cv = 〈cv1, cv2〉 are found a component at a time.

� A linear combination of three vectors v1, v2, and v3 is c1v1 + c2v2 + c3v3.

� In three dimensions, all linear combinations of v1, v2, and v3 typically fill a line, then a

plane, then the whole space R3.

1.2 Lengths and dot products

1.2. Key Ideas

� The dot product v ·w multiplies each component vi by wi and adds all viwi.

� The length ‖v‖ of a vector v is the square root of v · v.

� u = v/‖v‖ is a unit vector. Its length is 1

� The dot product v ·w = 0 when the vectors v and w are perpendicular

� If θ is the angle between v and w, then cos θ =
v ·w
‖v‖‖w‖

1.3 Matrices

1.3. Key Ideas

� Matrix times vector: Ax = linear combination of the columns of A with xi as weights.

� The solution to Ax = b is x = A−1b, when A is invertible.

� The difference matrix A is inverted by the sum matrix S = A−1.

� The cyclic matrix C has no inverse. Its three columns lie in the same plane. Those

dependent columns add to the zero vector. Cx = 0 has many solutions.
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Chapter 2

Solving Linear Equations

2.1 Vectors and linear equations

2.1. Key Ideas

� The basic operations on vectors are multiplication cv and vector addition v + w.

� Together those operations give linear combinations cv + dw.

� Matrix-vector multiplication Ax can be computed by dot products, a row at a time, but

Ax should be understood as a linear combination of the columns of A.

� Ax = b asks for a linear combination of the columns of A that produces b

� Each equation Ax = b gives a line (n = 2), plane (n = 3), or “hyperplane” (n > 3). They

intersect at the solution or solutions, if any.

2.2 The idea of elimination

2.2. Key Ideas

� A linear system becomes upper triangular after elimination.

� We subtract `ij times equation j from equation i to make the (i, j) entry zero, where

`ij =
(i, j) entry

pivot in row j
.

� A zero in the pivot position can be repaired if there is a nonzero below it.

� The upper triangular system is solved by back substitution.

� When breakdown is permanent, the system has no solution or infinitely many.
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2.3 Elimination using matrices

2.3. Key Ideas

� Ax = x1a1 + x2a2 + · · ·xnan
� row reduction and echelon form

� row reduction can be interpretted as products of elementary matrices with A

� When A multiplies any matrix B, it multiplies each column of B

2.4 Rules for matrix operations

2.4. Key Ideas

� The (i, j) entry of AB is the dot product of row i of A with column j of B.

� An m × n matrix times an n × p matrix gives an m × p matrix, and uses mnp separate

multiplications.

� A(BC) = (AB)C, but AB 6= BA in general

� Block multiplication is allowed when the block shapes match correctly

� Block elimination produces the Schur Complement D − CA−1B.

2.5 Invers matrices

2.5. Key Ideas

� The inverse matrix gives AA−1 = I and A−1A = I.

� A is invertible if and only if it has n pivots

� If Ax = 0 for a nonzero vector x, then A has no inverse

� The inverse of AB is B−1A−1, and (ABC)−1 = C−1B−1A−1.

� Reducing [ A I ] to reduced row echelon form gives [ I A−1 ].

2.6 LU factorization

2.6. Key Ideas

� Elimination (with now row exchanges) factors A into LU .

� L contains the numbers `ij that muiltiply pivot rows to get from A to U .

� On the right side we solve Lc = b (forward) and Ux = b (backward)
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2.7 Transposes and permutations

2.7. Key Ideas

� The rows of A are the columns of AT .

� The transpose of AB is BTAT , and (AT )−1 is (A−1)T .

� The dot product is x · y = xTy.

� When A is symmetric (AT = A), it’s LDU factorization is symmetric A = LDLT .

� A permutation matrix P has a 1 in each row and column, and PT = P−1.

� If A is invertible then a permutation P will reorder its rows for PA = LU .
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Chapter 3

Vector Spaces and Subspaces

3.1 Spaces of vectors

3.1. Key Ideas

� Rn contains all column vectors with n real components.

� M2×2, F, and {0} are vector spaces.

� A subspace containing v and w must contain all linear combinations cv + dw.

� The combinations of the columns of A form the column space Col(A). The column space

is “spanned” by the columns.

� Ax = b has a solution exactly when b is in the column space of A.

3.2 The null space, solutions to Ax = 0

3.2. Key Ideas

� The null space Nul(A) is a subspace of Rn. It contains all solutions to Ax = 0.

� Elimination produces an echelon matrix U , and then a row reduced R, with pivot columns

and free columns.

� Every free column of U or R leads to a special solution. The free variable equals 1 and

the other free variables equal 0. Back substitution solves Ax = 0.

� The complete solution to Ax = 0 is the linear combination of all the special solutions.

� If n > m, then A has at least one column without pivots, giving a special solution. So

there are nonzero vectors in Nul(A).
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3.3 The complete solution to Ax = b

3.3. Key Ideas

� The rank r is the number of pivots. The matrix R has m− r zero rows.

� Ax = b is solvable if and only if the last m− r equations reduce to 0 = 0.

� One particular solution xp has all free variables equal to zero.

� The pivot variables are determined after the free variables are chosen.

� Full column rank r = n means no free variables: one solution or none.

� Full row rank r = m means one solution m = n or infinintely many if m < n.

3.4 Independence, basis, and dimension

3.4. Key Ideas

� The columns of A are independint if x = 0 is the only solution to Ax = 0.

� The vectors v1, . . . ,vr span a space if their combinations fill that space.

� A basis consists of linearly independent vectors that span the space, and every vector is a

unique combination of vectors in that basis.

� All bases for a space have the same number of vectors, this number is called the dimension.

� The pivot columns are one basis for the column space. The dimension is r.

3.5 Dimensions of the four subspaces

3.5. Key Ideas

� The four subspaces are the row space, column space, nullspace, and left nullspace.

� The r pivot rows of r are a basis for the row spaces of R and A

� The r pivot columns of A are a basis for the column space.

� The n− r special solutions are a basis for the null spaces of A and R.

� The last m− r rows of I are a basis for the left null space of R.

� The last m− r rows of E are a basis for the left null space of A.
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Chapter 4

Orthogonality

4.1 Orthogonality of the four subspaces

4.1. Key Ideas

� Subspaces V and W are orthogonal if every v in V is orthogonal to every w in W .

� V and W are “orthogonal complements” if W contains all vectors perpendicular to V (and

vice versa). Inside Rn, the dimensions of the complements V and W add to n.

� The nullspace and rowspace are orthogonal complements, as are the column and left null

spaces.

� Any n linearly independent vectors in Rn will span Rn.

� Every x in Rn has a nullspace component xn and a row space component xr.

4.2 Projections

4.2. Key Ideas

� The projection of b onto the line through a is p = ax̂ =
a · b
a · a

a

� Projecting b onto a subsspace leaves z = b− p̂ perpendicular to the subspace

� When A has full rank n, the equation ATAx̂ = ATb leads to x̂ and p = Ax.

� The projection matrix P = A(ATA)−1AT has PT = P and P 2 = P .
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4.3 Least squares

4.3. Key Ideas

� The least squares solution x̂ minimizes E = ‖Ax− b‖2. This is the sum of squares of the

errors in the m equations (m > n).

� The best x̂ comes from the normal equations ATAx = ATb.

� To fit m points by a line b = C +Dt, the normal equations give C and D.

� The heights of the best line are p = (p1, . . . , pm). The vertical distances to the data points

are the errors e = (e1, . . . , em).

� If we try to fit m points by a combination of n < m functions, the m equations Ax = b

are generally unsolvable. The n equations ATAx̂ = ATb give the least squares solution –

the ombination with the smallest mean square error.

4.4 Orthogonal bases and Gram-Schmidt

4.4. Key Ideas

� If the orthonormal vectors q1, . . . ,qn are the columns of Q, then qi ·qj = 0 and qiqi = 1.

In other words, QTQ = I.

� If Q is square then Q is called an orthogonal matrix, and QT = Q−1

� The length of Qx equals the length of x : ‖Qx‖ = ‖x‖
� The projection onto the column space spanned by the q is P = QQT .

� If Q is square, then P = I, and every b = (b · q1)q1 + (b · q2)q2 + · · ·+ (b · qn)qn

� Gram-Schmidt produces orthonormal vectors q1, q2, and q3 from linearly independent a,

b and c. In matrix form, this is the factorization A = QR.
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